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ABSTRACT

In the present paper, we introduce two functions namely Q( ¢,~- v,p,q,z)and Q( c, v,p,q,z) in terms of Advanced M-
Series [9] introduced recently by Sharma and show their properties by using fractional integrals and derivatives.
Results derived in this paper are the extensions of the results derived earlier by Sharma and Dhakad [7].
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INTRODUCTION
The Advanced M-series [9] with p + 2 upper parameters a, a,, ...a,,y,uand q + 1 lower parameters by b, ... bq, &

is

) — ap
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K/lﬂ (2) = o (@) - (ap) (M) zk 1)
! s (by)yc - (bq) (&) (no)! (k)! T(ak + ) '
Here,a, peC, R(a) >0,m >0 and (a;)y (b )k ,(V)k(u)k, (6)kare pochammer symbols. (n;) > 0The

series (1.1) is defined when none of the denominator parameters b;s, j = 1,2, ... q is a negative integer or zero. If any
parameter a; is negative then the series (1.1))terminates into a polynomial in z. By using ratio test, it is evident that
the series (1.1) is convergent for all z, when g > p, it is convergent for |z| < 1 whenp = g + 1, divergent when p >

q + 1. In some cases the series is convergent for z = 1,z = —1. Let us consider take,

when p = q + 1, the series is absolutely convergent for |z| = 1 if R(8) < 0, convergent for z = —1,if 0 < R(B) <
1 and divergent for |z| = 1, if 1< R(B).

Some Special Cases

A) Ifweput (§), = (Wi, nx =1 inequation (1.2)it convertes in k

Function[7]
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B) If we put (6)x = (W, 1k = 1,y = 1 in equation (1.2)it convertes in, Generalized M-Series [10]

(@ - (g),

£ by - - - (by), T(ak +5

a.p
oM (2) = ) (1.3)

C) Ifwe put (6), = (W, Nk = 1,y =1, B = 1 in equation (1.2)it convertes in, M-Series [8]

a 2 (a)y - - .(ap)
M = k 1.4
pMa (@) & (by)y - - - (bg), Tak+1) 14
a.p
D) ;Mo i.e. no p upper or g lower parameters and (6), = (), ny = 1
a,p © k
Mo(ssz) = __ W@ (1.5)

 &iT(ak + B ()
Thus the series reduced to the Mittag-Leffler function as in [6].

MATHEMATICAL PREREQSITIES

The Riemann-Liouville fractional integral of order V € C is defined by Miller and Ross[3] (1993, p.45)

D) = % [t-u f Way,

(2.1)
where Re(v)>0. Following Samko et al. [6](1993, p. 37) we define the fractional derivative for & > 0 in
the form
1 d" ¢ f(u)du
D f(t) = , n=[Re(a)]+1),
DO = o g(t_u)m (n =[Re(@)]+1)

(2.2)

Where [Re(a)] means the integral part of Re(a).

Fractional Calculus Operators and Advanced M-series:

ow (@i - (ap), Mk
Let £(6) = 2 (b1 - - (bg) (B! (!

Fractional Integral and Fractional Derivative of the Sharma’s Advanced M-series [9]:

Let us consider the fractional Riemann-Liouville (R-L) integral operator (for lower limit a = 0 with respect
to variable z) of the Advanced M-Series (1.1).

1 VA
B0 = 15 f (z— D" F(0) dt
0
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Wedefine  Q(c,v,p,q,2z) =z" o M (c2)

Analogously, R — L fractional derivative operator of the Advanced M-series [9] with respect to z.

DY @) = 1y &) Of (=" f (0 de

(ct)kde

__ 1 (i)n f( _ v C (@) - - .(ap)k (W)
" I'(n—v) \dz ) z £ (b - - - (bg), (&) (i)t (R)! (K)!

n

1 v @ (), MW (©F <i)
T T =) L () - - - (bg) (i) (k) (K)! \dz

zZ
f(z — ) vl ek de
0

n

1 @ (@), Mk (©F (i)
T T—v) i (b - - - (by), (O)i(mi)! (K)! (K)! \dz
zM Y B(k + 1,n — v)

We use the modified Beta-function in above equation, which is defined as:

b
f (b—0F 1 (¢t — @)™ dt = (b— a)*F1 B(a, B),
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for R(a) > 0,R(S) >0

Again,

n

1w @ (@), M (©F/d
()

Dy f(z) = T(n—v) L by - - .(bq)k(5)k(nk)! (k) (R)!

I'(k+ 1DI'(nh—v)
I'k+1+n-—v) (33)

Zk+n—v

Wherek+1>0n—v>0

Differentiation n times the term zk*"~7 and using again I'(a + k) = (a),I'(a), representation(3.3) reduces to

_ i (@i - -(4) W Tk+n-v+D(@* . Tlk+1)
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1,1kv
We define  Q(c,— v,p,q,2) = z7% M ¢ (c2) (3.5)

PROPERTIES OF THE FUNCTIONS Q(C,v,p,q,z) AND Q(C,— v,p,q,2)
Theorem 4.1 If c is an arbitrary constant then

12Q(c, v,p,q,z) = Q(c,0+ v,p,q,2)
Proof:

By the definition of the fractional integral (2.1) we have

12Q(c, v,p,q,2) = %f;(z —t)°1Q(c, v,p,q,t) dt

1 ([, N @i - - (), Mi@rlet)
" T(o) Of(z —OT RZO B2 - - - (b), (O ()IT(k + 1+ v) ()

z

f(z — )7 1t (ct)* dt

0
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On Simplification and using Beta-function in above equation, we get the desired result
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17Q(c, v,p,q,2) = Q(c,0+ v,p,q,2)

Theorem 4.2 If c is an arbitrary constant then

D7Q(cv,p,q,2) = Q(c,v—0,p,q,2)

Proof: By the definition of the fractional derivative (2.2), we get

DZQ(cw,p,q,z)= Q(c,v—0,p,q2)

DIQ(c,v,p,q,z) =

Q(cy,p,q,2) =

1 (d\" (2, \n—o—1,-vye Gk - (ap), MWk (ct)*
F(n—o)(dz) fo(z t) t Zk=0(b1)k...(bq)kw)k(nk)!(k)z I'(k-v+1)

n

(d) fOZ(Z _ t)n—a—l t~v (t)kdt

dz

Ly (@i - - (ap), MWk
['(n-0) “%=0 (b)), . . (bq), T (k=v+1)(8) k(1) (K)!

Simplification and using Beta-function in above equation, we get the desired result

DZQ(cv,p,q,2z) = Q(c,v—0,p,q,%)

This completes the analysis.
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